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Introduction 

The challenges for cardiac MR imaging range in a magic triangle of spatial and temporal 
resolution, signal-to-noise ratio and the limitations induced by the need for breath-hold imaging. 
With the advent of multi-channel whole-body MRI systems at 3Tesla, these limitations can now 
be overcome. Parallel acquisition techniques (PAT) allow increasing temporal or spatial 
resolution at virtually no costs in acquisition time. The higher field strength at 3T makes up for 
the loss of signal-to-noise ratio (SNR) induced by fast scanning with PAT. With the combination 
of PAT and 3T, real-time acquisitions have now become feasible obviating the need for breath-
hold cardiac MRI. 
 

Basic Concepts of Parallel Imaging at 3T 

The concept of parallel imaging is the under-sampling of k-space by sampling only every nth line 
in k-space compared to a full k-space acquisition. This reduces the acquisition time to 1/n of the 
non-accelerated acquisition and is typically referred to as imaging with an acceleration or 
reduction factor R. However parallel imaging requires multi-element coils for spatially resolved 
signal detection. The so-called coil sensitivity profiles are then used to reconstruct an image 
equivalent to a full k-space acquisition without increase in acquisition time and without aliasing 
artifacts caused by under-sampling. Parallel imaging and 3T have a unique synergistic effect: 
one limitation of 3T MRI is the higher specific absorption rate (SAR) induced by the higher 
Larmor frequency of the RF pulses, which is effectively compensated by parallel imaging where 
fewer RF pulses are required to sample an equivalent data set. On the other hand the lower 
SNR induced by the use of PAT which decreases the SNR by at least a factor of one over the 
square root of the acceleration factor is compensated by the higher SNR at 3T. Looking at the 
performance of PAT at 3T compared to 1.5T, the loss of SNR introduced by an acceleration 
factor of R=4 with parallel imaging is approximately compensated by the SNR increase of a 
factor of 2 from 1.5 to 3.0T. Therefore a four-fold gain in acquisition speed is feasible at 3 Tesla 
with virtually no penalty in SNR compared to 1.5T. This methodological advantages result in a 
number of new possibilities in cardiac MRI at 3T: • Multi-breath-hold imaging can eventually 
become single breath-hold imaging. • a 128-matrix can eventually be increased to a 256-matrix. 
• Gated breath-hold CINE MRI may be replaced by free breathing real-time CINE MRI. • 2D 
CINE cardiac MRI may be replaced by 3D CINE cardiac MRI. 
 

Cardiac CINE MRI 

Cardiac cine MRI at 3 Tesla was initially not considered the primary application for 3T due to 
problems with the high SAR and a number of artifacts particularly for the use of steady-state free 
precession techniques (SSFP). For SSFP sequences, the absolute signal depends on the phase 
offset between ±α rf pulses according to the formula: Δϕ =Δω TE. 



Due to the higher resonance frequency at 3 Tesla this phase offset is increased within one field-
of-view thereby potentially resulting in a band-like artifact within the image. Recent improve-
ments such as the variable frequency scout have overcome this limitation by intentionally 
varying the frequency and thus introducing an additional phase offset to shift the artifact outside 
the region interest. In one study, excellent correlations between cardiac function parameters at 
1.5 T and 3.0 T were obtained and image quality for SSFP and spoiled-gradient echo (SGE) 
sequences was rated equal, although compared to SGE, SSFP was still more frequently prone 
to artifacts (1). 
It has been shown that single breath-hold multi-slice cardiac MRI is feasible already at 1.5T. In a 
study by Wintersperger et al. 11 short axis slices using steady-state free precession (SSFP) 
cardiac functional analysis, have been feasible within a single breath-hold of ~20 heart beats (2). 
As it had been shown in other studies that temporal resolution is more critical for the accuracy of 
cardiac function analysis than spatial resolution (3), a temporal resolution of <50ms could have 
been maintained in this study with an acquisition matrix of 128 (2). For those studies typically an 
acceleration factor of R=2 was used applying either a GRAPPA (generalized auto-calibrating 
partially parallel acquisition) or a SENSE reconstruction algorithm. A limitation of the integrated 
auto-calibration in the GRAPPA algorithm in CINE imaging is caused by the fact that within each 
image frame additional central lines in k-space (reference lines) have to be acquired for auto-
calibration of the coil sensitivity profiles. This results in a somewhat net loss of the effective 
acceleration factor R which is typically reduced by approximately 20-40% depending on the 
number of reference lines. More recent reconstruction algorithms such as TSENSE or 
TGRAPPA overcome this limitation by eliminating the need for additional reference line 
measurements by exploiting the data of an interleaved k-space line sampling covering the full k-
space in subsequent dynamic CINE frames (4, 5). These techniques allow for a marked 
acceleration of CINE SSFP imaging as already shown at 1.5T by Reeder et al. with no 
significant loss in image quality and accuracy for cardiac functional analysis at R=3 (6). The 
combination of the TSENSE algorithm with higher field strengths and multi-channel MRI at 3T 
exceeds this performance by far. Four-fold faster cardiac acquisitions at full 256 matrix size with 
no loss in diagnostic accuracy compared to the non-accelerated images have been successfully 
demonstrated in clinical applications (7). In a study of 10 patients with myocardial infarction an 
excellent visualization of regional wall motion abnormalities and evaluation of global ventricular 
function was possible due to the high spatial and temporal resolution of a full 256 matrix and 50 
ms temporal resolution in a multi-slice approach. This can be considered a gain in diagnostic 
accuracy for single breath-hold cardiac MRI compared to 1.5T, since it has been shown earlier 
that with real-time CINE regional function analysis is not reliably feasible at 1.5T due to the limits 
in spatial resolution. Another advantage of combining parallel imaging with multi-channel MRI 
systems at 3 T is, that the under-sampling of k-space with parallel acquisition techniques results 
in the possible use of higher flip angles for SSFP imaging. Due to the square relationship 
between the excitation angle and the specific absorption rate (SAR), cardiac MRI at 3T was 
traditionally limited to lower flip angles within the range of ~40° to 50°. Using TSENSE, flip 
angles of 60° or even higher could be realized resulting in a better blood-to-myocardium 
contrast. The contrast of multi-slice acquisitions at 3T accelerated by TSENSE is therefore 
comparable to non-accelerated images at 1.5T. 
 



Delayed contrast enhancement 

Also for the use in delayed enhancement (DE) imaging assessing myocardial infarction and 
viability, MRI at 3 Tesla allows for new possibilities and options. Despite all the effectiveness and 
value of DE imaging for assessment of myocardial infarction, this technique remains quite time 
intensive in clinical routine due to the need for inversion time adjustments to allow optimized 
contrast between the infarcted and normal myocardium. Already at 1.5T it had been shown that 
new techniques termed phase sensitive IR (PSIR) reconstruction, obviates the need for exact 
optimization of the inversion time (8). It has been demonstrated that PSIR allows an accurate 
assessment of the area of infarcted myocardium at virtually any arbitrary chosen inversion time 
(9). The combination with SSFP based acquisition speeds up data sampling allowing single 
breath-hold multi-slice coverage of the entire left ventricle for the exact assessment of the extent 
of myocardial infarction (10). However at 1.5T these images inherit higher image noise and are 
occasionally influenced by artifacts due to the ambiguousness of the phase information at low 
signal-to-noise ratios. At 3T the higher SNR allows for multi-slice single breath-holds SSFP PSIR 
imaging of the entire left ventricle with high image quality (11). The combination with PAT 
techniques like GRAPPA again allows preventing possible SAR limitations using SSFP at 3T. If 
TSENSE SSFP acquisitions of cardiac function and PSIR SSFP acquisition of delayed contrast 
enhancements are combined with multi-channel 3T MRI, a complete assessment of function and 
viability with high temporal and spatial resolution is feasible with only a few breath-holds. 
Comparing the accuracy of single breath-hold multi-slice acquisitions to time intensive multi-
breathhold single slice acquisitions, it has been shown that the agreement between the two is 
higher at 3T compared to 1.5T. 
 

Myocardial Perfusion 

While CINE MRI and viability imaging have already been daily clinical routine techniques on 
1.5T with sufficient high SNR levels, myocardial perfusion imaging has been a promising tool for 
the evaluation of coronary artery disease for years but never really took off for widespread use. 
This has been mainly based on limited SNR performance, artifacts and variable coexisting 
sequence techniques. At 3Tesla, one can envision that due the higher SNR the quality of 
saturation recovery gradient echo sequences (SR-GRE), the best evaluated standard in 
myocardial perfusion imaging, will substantially improve therefore enabling a reliable time-signal 
analysis and accurate assessment of myocardial perfusion. The gain in SNR could partially be 
invested in even higher spatial/temporal resolution using higher acceleration factors with PAT 
(e.g. TENSE) or enabling coverage of the entire short axis during first pass perfusion. 
 

Further Developments in cardiac MRI 

The introduction of 4D function analysis tools allows changing the approach for cardiac 
functional assessment (12). Although the use of the Simpsons’ rule with a contiguous coverage 
along the entire short axis from the apex to the AV-valve plane has major benefits in terms of 
accuracy based on its 3D modeling, the valve plane itself could much better be identified in 2- 
and 4-chamber views. The 4D analysis software allows combining the information of long and 
short axis cardiac MRI including a computerized LV model thereby reducing the number of 
required short axis views. This can be combined with single breath-hold cardiac MRI at 3T 



accelerated with TSENSE, since one breath-hold is sufficient to require 5-6 slices with 
sufficiently high temporal and spatial resolution for this type of analysis. Therefore one can 
envision a single breath-hold, highly accurate assessment of the LV function. With the advent of 
multi-channel scanner systems, new dedicated coil arrays might be developed that enable 
acceleration factors of 6 for TSENSE cine SSFP cardiac function analysis without substantial 
loss in diagnostic image quality (6). In combination with real-time acquisitions instead of 
segmented CINE techniques, this would allow new three-dimensional insights in the true 
physiologic cardiac action without the effects of intrathoracic pressure variations induced by the 
breath-hold. As already shown in preliminary studies this has promising clinical applications for 
the assessment of diseases such as constrictive pericarditis and the differentiation from 
restrictive cardiomyopathy (13). 
 

MRA at 3 Tesla 

In the past few years high-field scanners operating at 3.0 T have evolved from research to 
clinical scanners and have become widely available. The main motivation for the transition of 
contrast-enhanced 3D MR angiography (3D-CE-MRA) to 3.0 T is the theoretically doubled 
signal-to-noise ratio (SNR) compared to 1.5 T (14, 15). The higher SNR can be spent for either 
higher spatial resolution at the same examination time or faster image acquisition with 
unchanged spatial resolution. The longer T1 times at 3.0 T are also beneficial for MRA as they 
lead to improved background suppression (16) since the relaxivity of the injected gadolinium 
chelates remains relatively unchanged. Fortunately, the main problems of high-field imaging, i.e. 
increased susceptibility and dielectric artifacts, are not relevant with T1-weighted spoiled 
gradient echo sequences as employed for abdominal MRA. Solely, the specific absorption rate 
(SAR) which is increased by a factor of 4 at 3.0 T poses a potential problem. Therefore, the flip 
angle has to be lowered to less than 20° in most cases in order not to exceed the SAR threshold 
(15). Alternatively parallel imaging techniques may help to reduce the SAR to a certain degree if 
an additional delay after the shortened scan can be applied for the SAR calculation. The 
additional value of 3D-CE-MRA at 3 Tesla compared to 1.5 T has recently been demonstrated in 
preliminary studies for the carotids, renal and peripheral arteries (17). 
Time-of-flight MRA at 3 Tesla without use of contrast agents can be already considered the new 
state-of-the art approach for non-invasive imaging of the intracranial vessels due to the high 
resolution of less than 0.5x0.5x0.5 mm and the excellent background suppression. In particular, 
the detection of very small intracerebral aneurysms can be substantially improved at 3T. 
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